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Abstract— Without accounting for the limited availability of
shared cellular resources, the standard model of gene expression
fails to reliably predict experimental data obtained in vitro. To
overcome this limitation, we develop a dynamical model of gene
expression explicitly modeling competition for scarce resources.
In addition to accurately describing the experimental data, this
model only depends on a handful of easily identifiable parame-
ters with clear physical interpretation. Based on this model, we
then characterize the combinations of protein concentrations
that are simultaneously realizable with shared resources. As
application examples, we demonstrate how the results can be
used to explain similarities/differences among different in vitro
extracts, furthermore, we illustrate that accounting for resource
usage is essential in circuit design considering the toggle switch.

I. INTRODUCTION

One of the fundamental goals of synthetic biology is to
engineer complex behaviors both at the cellular and popula-
tion levels. Unfortunately, parts designed separately often fail
to function once interconnected due to context-dependence.
Sources of context-dependence include interactions among
parts due to spatial co-localization [1], dependence on the
host organism and strain [2], growth-dependence [3], envi-
romental dependence [4], and unwanted couplings due to
the composition of modules [5], [6], [7]. As a result, while
there are great successes in creating more and more complex
circuits, these efforts often involve numerous iterative cycles
of building and testing components.

While these steps are slow and expensive in vivo, they are
significantly faster and cheaper in vitro. As a result, cell-free
transcription-translation (TX-TL) systems offer a promising
avenue for synthetic biology [8]. Additionally, these systems
do not suffer from unwanted coupling between the synthetic
parts and the behavior of the host organism, for instance,
issues related to cell growth. Unfortunately, however, protein
expression requires the availability of resources (RNAP,
nucleotides, tRNAs, ribosomes, ATP, etc.) that are shared
among genes, and as a result, protein expression levels are
coupled even in the absence of regulatory linkages in vitro
[9], just as in vivo [10], [11]. To reliably analyze and predict
circuit behavior, these couplings need to be accounted for,
otherwise circuits need to be continuously re-designed and
re-tuned.

According to the most commonly used model of gene
expression, mRNA mi is transcribed and degraded with rate
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constants αi and δi, respectively, and protein xi is translated
and degraded with rate constants βi and γi, respectively [12].
With this, mRNA and protein dynamics are given by

ṁi = αiDi − δimi and ẋi = βimi − γixi, (1)

where Di denotes the concentration of DNA encoding the
gene of protein xi. Unfortunately, the above model shows
poor agreement with experimental results (Fig. 1), as the
model fails to account for the limited availability of shared
transcriptional and translational resources.

To overcome this issue, we explicitly account for the
limited availability of RNAP and ribosomes, as experimen-
tal evidence suggests that transcription and translation are
limited by the availability of these resources [13], [14].
As a result, the first contribution of this paper is a model
that can reliably predict protein expression with scarce
resources even in the presence of multiple proteins, validated
experimentally, extending the results of [9]. Building upon
this model, the second contribution of this paper is the
analytic characterization of protein concentrations that are
simultaneously realizable with shared resources considering
arbitrary network topology even during transient behavior,
complementing the results in [10], [15]. We then demonstrate
how the results presented here can be utilized to study and
standardize cell-free extracts and to design genetic circuits.

Our work complements the continuing endeavour of the
rational design of complex biocircuits. Notable examples
focusing on the issue of shared resources study competi-
tion for transcription factors [16], for proteases [17], and
for transcriptional and translational resources [9], [10]. A
more general approach for studying the effects of resource
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Fig. 1. Solid lines depict simulation results following parameter identifica-
tion using idnlgrey and pem in MATLAB and the model in (1), empty
circles represent measurement data from [9], colors indicate different DNA
concentrations D1 (see Figure 1 in [9] for experimental details).



competition is presented in [18] using Metabolic Control
Analysis (MCA) [19], a tool that is closely related to
Biochemical Systems Analysis [20]. MCA and its extensions
compute sensitivities around the steady state, providing a
local description. Conversely, the results presented here are
not restricted to near-equilibrium behavior.

This paper is organized as follows. We first introduce a
general mechanistic model for gene transcription networks
accounting for the limited availability of RNAP and ribo-
somes and formulate the two main questions of the paper
in Section II. We then answer these questions in Section
III together with their experimental verification. Application
examples are then considered in Section IV.

II. MODEL AND PROBLEM FORMULATION

After presenting the mathematical model of gene expres-
sion when shared resources are only available in limited
amounts, we formulate the two main questions of the paper.

A. Mathematical Model of Gene Expression

Transcription of protein xi is modeled by the reactions

bi + p
κ+
i−−⇀↽−−
κ−
i

ci and ci
αi−→ bi + p + mi, (2)

where bi, ci and mi denote the promoter of xi, the promoter
bound with RNAP p, and the resulting transcript, respec-
tively. Similarly, translation of protein xi is described by the
reactions

mi + r
k+i−−⇀↽−−
k−i

di and di
βi−→ mi + r + xi, (3)

where di denotes the complex of the transcript bound to the
ribosome r. Finally, dilution and degradation of mRNAs and
proteins are captured by the reactions

mi
δi−→ ∅, di

δi−→ r and xi
γi−→ ∅. (4)

Note that proteases are missing from the standard TX-TL
system and there is no dilution, so that γi = 0 generally [8].

From (2)–(4), the dynamics describing the expression of
protein xi are given by

ḃi =−
(
κ+i pbi − κ

−
i ci
)
+ αici,

ċi =
(
κ+i pbi − κ

−
i ci
)
− αici,

ṁi =αici − δimi −
(
k+i mir − k−i di

)
+ βidi,

ḋi =
(
k+i mir − k−i di

)
− βidi − δidi,

ẋi =βidi − γixi,

(5)

together with the conservation law Di = bi + ci, where
Di is the total concentration of the DNA encoding protein
xi, assumed to be constant [21]. So far we considered the
case when protein xi is expressed constitutively. In the more
general case when the expression of protein xi is regulated,
let εi(x) ∈ [0, 1] denote the fraction of promoter accessible
for RNAP (i.e., the fraction that is activated/not repressed).
In this case, we have that εi(x)Di = bi + ci instead of
Di = bi + ci, see [15] for details together with the specific
form of εi(x) in the most common cases.

B. Shared Resources

Take the case of n proteins being simultaneously ex-
pressed. Let pT and rT denote the total concentration of
RNAP and ribosomes, respectively. Considering (2)–(3), the
concentration of RNAP sequestered for the transcription of
mi is ci from (2), whereas the concentration of ribosomes al-
located for the translation of xi is di from (3). Consequently,
we obtain the conservation laws

pT = p+

n∑
i=1

ci and rT = r +

n∑
i=1

di (6)

for RNAP and ribosomes, respectively. It is through these
conservation laws that the expression of different proteins
xi become coupled according to (5), even in the absence of
regulatory linkages among them.

C. Problem Formulation

In this paper we address two main questions. First, we seek
a model that reliably predicts protein expression levels in
the presence of multiple proteins competing for the same re-
sources such that it depends only on parameters that are easy
to measure/identify. Second, based on this model, we wish
to characterize the combinations of protein concentrations
xi(t) for i = 1, 2, . . . , n and t ≥ 0 that are simultaneously
realizable with shared resources.

III. RESULTS

To address the two main questions formulated in the
previous section, we first exploit the presence of multiple
time-scales and the typical range of parameter values to
obtain a reduced order model of (5)–(6).

A. Model Order Reduction and Parameter Identification

Introduce κi = (κ−i +αi)/κ
+
i and ki = (k−i +βi+δi)/k

+
i .

Given that protein production and decay are much slower
than binding and unbinding reactions [22], we have αi � κ−i
and βi, δi � k−i , so that κi ≈ κ−/κ+i and ki ≈ k−i /k

+
i .

Therefore, at the quasi-steady state of (5) we obtain

ṁi = αici−δimi−δidi and ẋi = βidi−γixi, (7)

together with 0 = −
(
κ+i pbi − κ

−
i ci
)
+ αici and 0 =(

k+i mir − k−i di
)
− βidi − δidi, yielding

ci = εiDi

p
κi

1 + p
κi

and di =
mir

ki
. (8)

The dynamics of mi and xi for i = 1, 2, . . . , n are coupled
through the solutions p and r of (6). From (6) it follows that
r = rT /(1+

∑n
j=1

mj

kj
), however, the analytic solution for p

is not tractable for n > 2. To overcome this limitation, note
that in vivo we have p� κj and r � kj [10], [15], and since
the in vitro TX-TL system is a diluted version of its in vivo
counterpart, the concentrations p and r are even lower than
in vivo [8]. Combining (8) with the approximations p� κj
and r � kj , (7) becomes

ṁi =αici(x)− δimi,

ẋi =βidi(m)− γixi,
(9)



with x = (x1, x2, . . . , xn)
T , m = (m1,m2, . . . ,mn)

T and

ci(x) =pT

Di

κi
εi(x)

1 +
∑n
j=1

Dj

κj
εj(x)

, (10)

di(m) =rT

mi

ki

1 +
∑n
j=1

mj

kj

. (11)

While (9) bears resemblance to (1), it is fundamentally
different as (10)–(11) capture the coupling in both tran-
scription and translation due to shared resources. In par-
ticular, there is no coupling among mRNA concentrations
if
∑n
j=1Dj/κj � 1, and similarly, there are no unwanted

interactions among protein expressions if
∑n
j=1mj/kj � 1

additionally, and in this case, (9)–(11) simplifies to (1).
To validate (9)–(11), we consider the experimental data

from [9]. First, we focus on the case of a single protein
x1 being expressed with different DNA concentrations D1.
Following parameter identification, the simulation results
are presented in Fig. 2A, whereas the identified parameters
can be found in Table I (γ1 = 0 as proteins are not
degraded/diluted). Since m1/k1 < 0.04� 1 we expect that
when neglecting competition for ribosomes, i.e., ignoring the
denominator in (11), the resulting model should still reliably
predict mRNA and protein concentrations, which is indeed
the case (the results are indiscernable from those presented in
Fig. 2A). Conversely, considering that D1/κ1 can be as high
as 0.4, which is comparable to 1, we expect that neglecting
RNAP sequestration, i.e., ignoring the denominator in (10),
yields much worse predictive capabilities, evidenced by the
results presented in Fig. 2B.

So far we only considered the expression of one protein.
To further test the validity of (9)–(11), we next turn our
attention to the case of two proteins expressed simultane-
ously: a reporter protein x1 and a load protein x2 (see Figure
5 in [9] for experimental details). The parameters of these
two proteins are identified separately, see Table I for the
obtained parameter values using the experimental data from
[9]. The results in Fig. 3 correspond to the case when they are
expressed together. Experimental data from [9] is depicted
in blue, which is in good agreement with the simulation data
obtained from (9)–(11) by considering both proteins (red
curve). Conversely, the simulation data considering only the
reporter protein x1 without the load protein x2 is depicted in
green (D2 = 0). The significant gap between this curve and
the experimental data in blue underscores the importance of
accounting for the limited availability of shared resources.

TABLE I
PARAMETER VALUES OBTAINED VIA IDENTIFICATION

Parameter Value Unit Parameter Value Unit
δ1 0.97 1/h δ2 1.39 1/h

α1pT 610.20 nM/h α2pT 843.07 nM/h
β1rT 140.18 nM/h β2rT 3421.89 nM/h
κ1 8.21 nM κ2 7.6786 nM
k1 7.75 µM k2 213.69 µM
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Fig. 2. Solid lines depict simulation results following parameter identi-
fication using idnlgrey and pem in MATLAB and the model in (9)–
(11), empty circles represent measurement data from [9], colors indicate
different DNA concentrations D1 (see Figure 1 in [9] for experimental
details). (A) Both RNAP and ribosome sequestration are modeled. (B)
RNAP sequestration is neglected.
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Fig. 3. Blue circles represent measurement data from [9] with standard de-
viation obtained from triplicates in the case of D1 = 2nM and D2 = 10nM
(see Figure 5 in [9] for experimental details). The red curve denotes the
simulation results from (9)–(11) considering both proteins with parameters
in Table I, whereas the green curve corresponds to the case when only x1
is expressed (D2 = 0).

B. Simultaneously Realizable Protein Concentrations

Building upon the model in (9)–(11) reliably predicting
protein expression levels with shared resources, we next
focus on characterizing the protein concentrations that can
be expressed simultaneously. To simplify notation, we write
εi(t) instead of εi(x(t)), and similarly, ci(t) and di(t) instead
of ci(x(t)) and di(m(t)) from (10)–(11). Furthermore, since
our main focus is the TX-TL system, we assume that γi = 0
for i = 1, 2, . . . , n, corresponding to the case when proteins
are not degraded/diluted [8].



Proposition 1. Let εi(t) ≡ ε∗i ∈ [0, 1] for i = 1, 2, . . . , n,
and let mi(t) and xi(t) denote the solution of

ṁi =αici(t)− δimi(t) mi(0) = 0,

ẋi =βidi(t) xi(0) = 0,
(12)

where ci(t) and di(t) are given in (10)–(11). Then

xi(t) ≤ βirT [t− gi(t, ωi)] t ≥ 0

with

ωi =
αipT
δiki

Di

κi
ε∗i

1 +
∑n
j=1

Dj

κj
ε∗j
,

gi(t, ω) =
ln[(1 + w)eδit − ω]

δi(1 + ω)
.

(13)

If δi = δ for i = 1, 2, . . . , n, we further have

xi(t) = βirT
ωi∑n
j=1 ωj

[
t− gi

(
t,

n∑
j=1

ωj

)]
t ≥ 0.

Proof. Define α∗i = Di

κi
ε∗i /(1 +

∑n
j=1

Dj

κj
ε∗j ), so that ṁi =

α∗i − δimi from (12), yielding

mi(t) =
α∗i
δi

(
1− e−δit

)
t ≥ 0. (14)

As mi(t) ≥ 0 for t ≥ 0, from (12) we further have ẋi ≤
βirT

mi

ki
/(1 + mi

ki
), so that from (14) we obtain that

xi(t) ≤βirT
∫ t

0

α∗
i

δiki
(1− e−δiτ )

1 +
α∗

i

δiki
(1− e−δiτ )

dτ

=βirT [t− gi(t, ωi)] t ≥ 0

with ωi and gi(., .) defined in (13).
Similarly, in the special case when δi = δ for i =

1, 2, . . . , n we have from (12) that

xi(t) =βirT

∫ t

0

α∗
i

δki
(1− e−δτ )

1 + (1− e−δτ )
∑n
j=1

α∗
j

δkj

dτ

=βirT
ωi∑n
j=1 ωj

[
t− gi

(
t,

n∑
j=1

ωj

)]
t ≥ 0.

Proposition 1 provides us with two results. In the special
case when the mRNA degradation rates are the same, we
obtain the exact solution for xi(t). In the general case,
however, we only obtain an upper bound for the trajectories.
Importantly, even the upper bound turns out to be an ex-
tremely good approximation of xi(t), evidenced by Fig. 4A
for the setup with the reporter protein x1 and the load protein
x2 considered in Fig. 3. This is not surprising since we obtain
the upper bound in the proof of Proposition 1 by considering
the approximation 1+

∑n
j=1mj/κj � 1+mi/κi, which is

expected to introduce little approximation error based on the
identified parameters in Table I.

While Proposition 1 provides us with detailed knowledge
about xi(t) individually for i = 1, 2, . . . , n, it only applies to
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Fig. 4. Realizable protein concentrations. (A) Blue circles represent
measurement data from [9] with standard deviation obtained from triplicates
in the case of D1 = 2nM and D2 = 10nM (see Figure 5 in [9] for experi-
mental details). The red curve denotes the upper bound βirT [t− gi(t, ωi)]
from Proposition 1. (B) With two proteins, the trajectory x(t) of (15) is
constrained within the grey region, given by the intersection of the simplexes
S1(T ) and S2(T ) from (16).

the special case when each protein has a constant activation
level (i.e., εi(t) ≡ ε∗i for t ≥ 0 and i = 1, 2, . . . , n). This
is the case when proteins have no regulatory interactions
among them, which is the case in the experimental setup in
[9]. However, in the overwhelming majority of cases, we are
interested in protein dynamics with regulatory interactions
among them. Therefore, in what follows we focus on the case
when the activation levels εi(t) are time-varying signals. To
characterize the realizable protein concentrations in this case,
we exploit the fact that protein dynamics are slower than
mRNA dynamics [22], so that we have mi(t) = αici(t)/δi
at the quasi-steady state of (9)–(11), together with

ẋi =
Aiεi(t)

1 +
∑n
j=1Bjεj(t)

− γixi xi(0) = 0, (15)

where Ai = βiαiDipT rT
δiκiki

and Bj =
Dj

κj
(1 +

αjpT
δjkj

).

Proposition 2. Consider εj(t) for j = 1, 2, . . . , n for
t ∈ [0, T ] such that εj(t) ∈ [0, 1], and let x(t) denote
the corresponding solution of (15) when γi = 0 for i =
1, 2, . . . , n. Then we have x(t) ∈ S(T ) = ∩ni=1Si(T ) with

Si(T ) =
{
x | x ≥ 0 and

xi
xmax
i

+

n∑
j=1, j 6=i

xj
x∞j
≤ T

}
, (16)

where xmax
i = Ai/(1 +Bi) and x∞i = Ai/Bi.

Proof. Since xi(t) increases monotonically from (15) when
γi = 0, it is sufficient to prove that x(T ) ∈ S(T ) by showing
that x(T ) ∈ Si(T ) for i = 1, 2, . . . , n. To this end, define

zi =
xi
xmax
i

+

n∑
j=1, j 6=i

xj
x∞j

, (17)

so that z(0) = 0. Furthermore, from (15) it follows
that żi(t) = 1 + [1 − εi(t)]/[1 +

∑n
j=1Bjεj(t)], so that

εj(t) ∈ [0, 1] for j = 1, 2, . . . , n yields żi(t) ∈ [0, 1],
thus zi(T ) ∈ [0, T ]. From (17) we than obtain xi/x

max
i +∑n

j=1, j 6=i xj/x
∞
j ≤ T , whereas xi(T ) ≥ 0 follows directly

from (15). Therefore, x(T ) ∈ Si(T ) for i = 1, 2, . . . , n,
proving that x(t) ∈ ∩ni=1Si(T ) for t ∈ [0, T ].



According to Proposition 2, the protein concentrations
that are simultaneously realizable are constrained within the
intersection of the simplexes Si(T ) for i = 1, 2, . . . , n.
These simplexes and thus their intersection grow in time,
see Fig. 4B. Since x(t) ∈ ∩ni=1Si(T ) for t ∈ [0, T ] holds
for all εj(t) ∈ [0, 1] time-varying signals, thus for all
possible underlying regulatory networks, in some cases the
set ∩ni=1Si(T ) is conservative. However, it is not a trivial and
overly conservative outer approximation, as it can also be
extremely tight. To illustrate this, let εi(t) ≡ 1 and εj(t) ≡ 0
for j 6= i and t ∈ [0, T ], yielding xi(T ) = Txmax

i and
xj(T ) = 0, a point on the boundary of the set ∩ni=1Si(T ).

IV. APPLICATION EXAMPLES
Next we illustrate how the quantification of resource usage

can be leveraged throughout two application examples.

A. Comparing TX-TL Extracts

We demonstrated in Fig. 2 and Fig. 3 that we can reliably
predict both mRNA and protein expression levels using the
model in (9)–(11). Additionally, the parameters that we iden-
tified (see Table I) can be used to characterize and compare
parts, and more importantly, different TX-TL extracts. To
illustrate this, consider Fig. 5, in which we compare two
different extracts: ‘e16’ (blue) and ‘e27’ (orange) expressing
the construct Pr-deGFP-MGapt from [9].

Let ‘TL peak’ denote the highest protein concentration
achieved, and let ’TL peak time’ be the time to reach 90%
of this value starting from zero (‘TX peak’ and ‘TX peak
time’ are defined similarly for mRNA levels). Looking at ‘TL
peak’ and ‘TL peak time’, one might conclude that ‘e16’ and
‘e27’ behave similarly, except that ‘e27’ runs longer, thus
the higher ‘TL peak’. Considering ‘TX peak time’ further
suggests a strong similarity between the two extracts, the
only difference being the fact that ‘e27’ runs longer. Looking
at ‘TX peak’, however, there is a stark difference: while ‘e27’
runs considerably longer, it produces far less mRNA.

To understand how these two extracts are different, we
consider the parameters that we identified (Fig. 5). In par-
ticular, κ is smaller in ‘e27’, so that the promoter behaves
as if it was stronger than in ‘e16’. However, αpT is much
smaller in ‘e27’ than in ‘e16’, so that transcription is much
slower (less RNAP and/or smaller transcription rate) in ‘e27’
than in ‘e16’. As for translation, the two extracts are indeed
similar, as βrT /k characterizing translational speed is almost
identical. Summarizing the above, while ‘e16’ and ‘e27’
behave almost identical at the translational level, there is
a stark difference at the transcriptional level, revealed by the
identified parameters using the model in (9)–(11).

B. Rational Design of Circuits

From (15), the dynamics of the toggle switch from [23]
can be written for i, j = 1, 2 as

dxi
dt

=
Aiεi(xj)

1 +B1ε1(x2) +B2ε2(x1)
− γixi i 6= j (18)

with εi(xj) = KD,i/(KD,i + x2j ), where KD,i denotes the
dissociation constant of xj binding to the promoter of xi.

0 50 100 150 200

%

beta*rT/k

alpha*pT

kappa

TX peak

TX peak time

TL peak

TL peak time

Fig. 5. Parameter values obtained by expressing the circuit Pr-CFP-
MGa (see [9] for details) in two extracts: ‘e16’ (blue) and ‘e27’ (orange),
both obtained by following the extract preparation protocol detailed in [8].
Parameter values are normalized so that the ones corresponding to ‘e16’
represent 100%.

To simplify the notation and analysis, we focus on the case
when KD,1 = KD,2 = KD, A1 = A2 = A, B1 = B2 = B
and γ1 = γ2 = γ, so that introducing

zi =
γ

A
xi, K =

( γ
A

)2
KD and τ = tγ (19)

yields the dimensionless description for i, j = 1, 2

dzi
dτ

=
εi(z2)

1 +B[ε1(z2) + ε2(z1)]
− zi i 6= j. (20)

Neglecting resource usage (B = 0) yields the standard
dimensionless description for i, j = 1, 2

dzi
dτ

= εi(zj)− zi i 6= j. (21)

Proposition 3. The system in (20) is bistable if and only if
K < 1

4(B+1)2 .

Proof. The system in (20) has five fixed points. Two of them
are always imaginary, one is always real, and the other two
are real if and only if K < 1

4(B+1)2 . Taking the Jacobian at
these latter two fixed points, its eigenvalues are negative, so
that the corresponding fixed points are stable nodes.

As for the third fix point, we use index theory to show that
it is a saddle. Consider the square [0, 1/(1 + B)]2. Along
its sides, the vector field (20) is pointing inwards, so that
its index is I = +1. The square [0, 1/(1 + B)]2 contains
the two fixed points given above, both having index +1.
Consequently, the third fixed point must be contained in the
square [0, 1/(1 + B)]2, and it must have index −1, so that
it is a saddle. Choosing µ = K(B + 1)2 as bifurcation
parameter, the system (20) goes through a supercritical
pitchfork bifurcation at µ = 1/4. Therefore, (20) is bistable
if and only if K < 1

4(B+1)2 .

Proposition 4. The system in (21) is bistable if and only if
K < 1

4 .

Proof. Similar to the proof of Proposition 3.



According to Propositions 3–4, the toggle switch with
and without resource usage is bistable if the dimensionless
dissociation constant K is sufficiently small. However, this
threshold is not the same for (20) and (21). Considering (19),
while for (21) it is sufficient to have

KD <
1

4

(
A

γ

)2

, (22)

for (20) bistability is achieved only if

KD <
1

4

(
A

γ

)2
1

(1 +B)2
. (23)

For instance, considering Table I, we obtain that 1/(1 +
B)2 ≈ 0.05. That is, while without accounting for resource
usage we would conclude that KD needs to satisfy only
(22), in reality, it needs to be about 20 times smaller (tighter
repression) so that it satisfies (23) to yield a bistable toggle.

V. CONCLUSION
In this paper, we characterized the effects of the limited

availability of transcriptional and translational resources on
mRNA and protein expression in the cell-free TX-TL system.
The main motivation of this work is the apparent discrepancy
between the prediction of the standard model in (1) and the
experimental data in Fig. 1.

To overcome this limitation, we first derived the model in
(9)–(11) that accounts for the limited availability of RNAP
and ribosomes. This model reliably predicts both the expres-
sion level of a single protein (Fig. 2) and that of a reporter
protein expressed simultaneously together with a load protein
(Fig. 3). Second, we characterized the combination of protein
concentrations that are simultaneously realizable with shared
resources (Fig. 4). Both these results contribute to realizing
the full potential of the TX-TL system as a platform for rapid
prototyping and characterization of synthetic gene circuits.

Additionally, we demonstrated that by identifying both
extract and part parameters using (9)–(11), we can compare
various extracts and understand how similar/different they
are. As a result, batch-to-batch variation can be minimized,
furthermore, different extracts can be chosen for different
purposes with desirable properties (e.g., more translational
capacity at the expense of less transcriptional capacity).
Complementing this, we illustrated that accounting for com-
petition for shared resources is essential when designing
synthetic circuits. In particular, we demonstrated that for the
toggle switch to become bistable, we need to employ signif-
icantly stronger promoters than what would be suggested by
models neglecting the effects of shared resources.

A natural extension of the results presented here is de-
scribing the second phase of translation/transcription, i.e.,
after the peak in transcription (see [8] for details). To this
end, it is essential to understand why there is a transition
between these two phases, and which factors determine the
timing of this transition. Additionally, the results presented
here, especially the parameter values that can be identified
using the model in (9)–(11), can serve as guides for fine-
grained modeling of the reactions including more details,
such as ATP and nucleotides [24].

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the helpful contribu-
tion of Dan Siegal, Zachary S. Sun, Clarmyra A. Hayes,
Enoch Yeung and Domitilla Del Vecchio.

REFERENCES

[1] R.S. Cox, M.G. Surette and M.B. Elowitz, Programming gene expres-
sion with combinatorial promoters, Mol. Syst. Biol., vol. 3, 2007.

[2] F.K. Balagadde, L. You, C.L. Hansen, F.H. Arnold and S.R. Quake,
Long-term monitoring of bacteria undergoing programmed population
control in a microchemostat, Science, vol. 309, 2005, pp. 137-40.

[3] M. Scott, C.W. Gunderson, E.M. Mateescu, Z. Zhang and T. Hwa,
Interdependence of cell growth and gene expression: origins and
consequences, Science, vol. 330, 2010, pp. 1099-1102.

[4] J. Neupert, D. Karcher and R. Bock, Design of simple synthetic
RNA thermometers for temperature-controlled gene expression in
Escherichia coli, Nucleic Acids Res., vol 36, 2008, pp. e124.

[5] E. Franco, E. Friedrichs. J. Kim, R. Jungmann, R.M. Murray,
E.Winfree and F.C. Simmel, Timing molecular motion and production
with a synthetic transcriptional clock”, PNAS, vol. 108, 2011.

[6] D. Del Vecchio, A.J. Ninfa and E.D. Sontag, Modular cell biology:
retroactivity and insulation, Mol. Syst. Biol., vol. 4, 2008.

[7] A. Gyorgy and D. Del Vecchio, Modular composition of gene tran-
scription networks, PLoS Comp. Biol., vol. 10, pp. e1003486.

[8] M.K. Takahashi, C.A. Hayes, J. Chappell, Z.S. Sun, R.M. Murray,
V. Noireaux and J.B. Lucks, Characterizing and prototyping genetic
networks with cell-free transcription-translation reactions, Methods,
vol. 86, 2015, pp. 60-72.

[9] D. Siegal-Gaskins, Z.A. Tuza, J. Kim, V. Noireaux and R.M. Murray,
Gene Circuit Performance Characterization and Resource Usage in a
Cell-Free ”Breadboard”, ACS Synth. Biol., vol. 3, 2014, pp. 41625.

[10] A. Gyorgy, J.I. Jimenez, J. Yazbek, H.-H. Huang, H. Chung, R. Weiss
and D. Del Vecchio, Isocost lines describe the cellular economy of
genetic circuits, Biophys. J., vol. 109, 2015, pp. 639-46.

[11] F. Ceroni, R. Algar, G.B. Stan and T. Ellis, Quantifying cellular
capacity identifies gene expression designs with reduced burden,
Nature Methods, vol. 12, 2015, pp. 415–18.

[12] D. Del Vecchio and R.M. Murray, Biomolecular Feedback Systems,
Princeton University Press, 2014.

[13] G. Churchward, H. Bremer and R. Young, Transcription in bacteria at
different DNA concentrations, J. Bacteriol., vol. 150, 1982, pp. 572-
81.

[14] J. Vind, M.A. Sorensen, M.D. Rasmussen and S. Pedersen, Synthesis
of proteins in Escherichia coli is limited by the concentration of free
ribosomes: expression from reporter genes does not always reflect
functional mRNA levels, J. Mol. Biol., vol. 231, 1993, pp. 678-88.

[15] A. Gyorgy and D. Del Vecchio, ”Limitations and trade-offs in gene
expression due to competition for shared cellular resources”, IEEE
Conference on Decision and Control, 2014.

[16] R.C. Brewster, F.M. Weinert, H.G. Garcia, D. Song, M. Rydenfelt
and R. Phillips, The transcription factor titration effect dictates level
of gene expression, Cell, vol. 156, 2014, pp. 1312-23.

[17] N.A. Cookson, W.H. Mather, T. Danino. O. Mondragon-Palomino, R.J.
Williams, L.S. Tsimring and J. Hasty, Queueing up for enzymatic
processing: correlated signaling through coupled degradation, Mol.
Syst. Biol., vol. 7, 2011.

[18] D. De Vos, F.J. Bruggeman, H.V. Westerhoff and B.M. Bakker, How
molecular competition influences fluxes in gene expression networks,
PLoS One, vol. 6, 2011, pp. e28494.

[19] D.A. Fell, Metabolic control analysis: a survey of its theoretical and
experimental development, Biochem. J., vol. 286, 1992, pp. 313-30.

[20] M.A. Savageau, Biochemical systems analysis: a study of function and
design in molecular biology, AddisonWesley, 1976.

[21] T. Akerlund, K. Nordstrom and R. Bernander, Analysis of cell size
and DNA content in exponentially growing and stationary-phase batch
cultures of Escherichia coli, J. Bacteriol., vol. 177, 1995, pp. 6791-7.

[22] U. Alon, An introduction to systems biology – Design principles of
biological circuits, Chapman and Hall, 2006.

[23] T.S. Gardner, C.R. Cantor and J.J. Collins, Construction of a genetic
toggle switch in Escherichia coli, Nature, vol. 403, 2000, pp. 339-42.

[24] Z.A. Tuza, V. Singhal, J. Kim and R.M. Murray, ”An in silico
modeling toolbox for rapid prototyping of circuits in a biomolecular
breadboard system”, IEEE Conference on Decision and Control, 2013.


